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Overview

We are releasing https://github.com/ahbarnett/finufft

What does it do?

“Fourier analysis of non-uniformly spaced data at close to FFT speeds”

But. . . there already exist libraries?

eg NFFT from Chemnitz (Potts–Keiner–Kunis), NUFFT from NYU (Lee–Greengard)

Ours is faster in large-scale 2D and 3D settings & simpler to use

Goals: show some math and engineering behind why, give applications. . .



. . . and explain how “Tex” Logan—one of the best bluegrass fiddle players in

the country—is key to the story:
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= f̂k desired +

∑

m 6=0 f̂k+mN aliasing error due to discrete sampling

Key: f smooth ⇔ f̂n decays for |n| large ⇔ aliasing error small

eg (d/dx)pf bounded ⇒ f̂n = O(1/|n|p) p-th order convergence of error vs N

3) Estimate power spectrum of non-periodic signal on U grid

must first multiply by a “good” window function
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Inputs: {xj}Mj=1 NU (non-uniform) points in [0, 2π)

{cj}Mj=1 complex strengths, N number of modes

Three flavors of task:

Type-1: NU to U, evaluates fk =
M
∑

j=1

eikxjcj , −N/2 ≤ k < N/2

F series coeffs of sum of point masses. Generalizes the DFT (was case xj = 2πj/N )

Type-2: U to NU, evaluates cj =
∑

−N/2≤k<N/2
eikxjfk , j = 1, . . . ,M

Evaluate usual F series at arbitrary targets. Is adjoint (but not inverse!) of type-1

Type-3: NU to NU, also needs NU output freqs {sk}Nk=1

evaluates fk =
M
∑

j=1

eiskxjcj , k = 1, . . . , N general exponential sum

• For dimension d = 2, 3 (etc), replace kxj by k · xj = k1xj + k2yj , etc



These tasks crop up a lot

• Magnetic resonance imaging (MRI).

f is unknown 2D image; seek its vector of values f on a U grid

Given data yj = f̂(kj) at NU set of Fourier pts kj :

spiral imaging PROPELLER

Evaluating the forward model, ie eval. y = Af , is a 2D type-2 NUFFT.

Reconstruct f by iteratively solving this (rect, ill-cond) linear system (eg Fessler)

Even computing a good preconditioner for this lin. sys. needs the NUFFT (Greengard–Inati ’06)
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• computing actual Fourier transforms of non-smooth f(x) accurately:
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f(x) FT
f(k)

NU quadrature nodes

Apply a good quadrature rule (eg Gauss) to the Fourier integral f̂(k) :=

∫
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• Coherent diffraction imaging again given Fourier data on NU pts (Ewald spheres)

• PDEs: interpolation from U to NU coords grids, applying heat kernels

• Making PDEs, mol. dyn, spatially periodic (“particle-mesh Ewald”)

• Given large # of point masses (eg stars), what is Fourier spectrum?
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Three steps: Set up fine grid on [0, 2π), spacing h = 2π/Nf , Nf > N

a) Add each strength cj onto fine-grid cell w/ location x̃j nearest xj .

b) Call this vector {bl}Nf−1
l=0 : take its size-Nf FFT to get {b̂k}Nf/2−1

k=−Nf/2
.

c) Keep just low-freq outputs: f̃k = b̂k, for −N/2 ≤ k < N/2

What is error? High freqs |k| = N/2 are the worst: relative error thus

ei
N
2
xj − eiN2 x̃j = O(Nh) = O(N/Nf )

• 1st-order convergent: eg error 10−1 needs Nf ≈ 10N .

• in 3D needs Nf
3 ≈ 103N3 1000× slower than plain FFT, for 1-digit accuracy! Terrible!

And yet the idea of dumping onto fine grid is actually good. . .

But need much more rapid convergence!



1D type-1 NUFFT algorithm

Three steps: Set up “not-as-fine” grid on [0, 2π), Nf = σN , upsampling σ ≈ 2

Pick a spreading kernel ψ(x) support must be only a few h wide

a) Spread each spike cj onto fine grid bl =
∑M

j=1 cjψ(lh− xj) detail: periodize
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1D type-1 NUFFT algorithm

Three steps: Set up “not-as-fine” grid on [0, 2π), Nf = σN , upsampling σ ≈ 2

Pick a spreading kernel ψ(x) support must be only a few h wide

a) Spread each spike cj onto fine grid bl =
∑M

j=1 cjψ(lh− xj) detail: periodize

b) Do size-Nf FFT to get b̂k
c) Correct for spreading: f̃k =

1
ψ̂(k)

b̂k, for −N/2 ≤ k < N/2

Why? since you convolved sum of point masses
∑M

j=1
cjδ(x− xj) with ψ(x),

undo by deconvolving: dividing by kernel in Fourier domain

Type-2 similar; type-3 needs more upsampling (by σ2 not σ)
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A) ψ should have small support. Why? Spreading costs O(wdM) flops

kernel is w grid pts wide
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What makes a good kernel ψ(x)?

A) ψ should have small support. Why? Spreading costs O(wdM) flops

kernel is w grid pts wide

B) ψ should be smooth. Why? So
∑M

j=1 cjψ(x− xj) is also

recall smooth → small DFT aliasing error

A) and B) are conflicting requirements :(

Rigorous error analysis: |f̃k − fk| ≤ ǫ‖c‖1

where ǫ = max
|k|≤N/2,x∈R

1

|ψ̂(k)|
∣

∣

∑

m 6=0

ψ̂(k +mNf )e
i(k+mNf )x

∣

∣

k

(k)Ψ

−N/2 N/2 N−2N −N

usable band

ff f

want ψ̂ large in |k| < N/2, small for |k| > Nf −N/2



(Partial) history of the NUFFT

• Interpolation of F series to NU pts, astrophysical (Boyd ’80s, Press–Rybicki ’89)

• Gaussian kernel case ψ(x) = e−αx
2

(Dutt–Rokhlin ’93, Elbel–Steidl ’98)

rigorous proof of exponential convergence vs w, ie # digits = log10(1/ǫ) ≈ 0.5w

• Realization there’s a close-to-optimal kernel (“Kaiser–Bessel”) (Jackson ’91)

nearly twice the convergence rate: log10(1/ǫ) ≈ 0.9w

rigorous analysis (Fourmont ’99, Fessler ’02, Potts–Kunis. . . ’02)

• Fast gridding for Gaussian case by cutting ex evals (Greengard–Lee ’04)

• Low-rank factorization version (Ruiz-Antolı́n–Townsend ’16)

uses ∼ wd (not-upsampled!) FFT calls

• Simpler kernel, same rate as K–B, rigorous analysis (B–Magland)
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• Interpolation of F series to NU pts, astrophysical (Boyd ’80s, Press–Rybicki ’89)

• Gaussian kernel case ψ(x) = e−αx
2

(Dutt–Rokhlin ’93, Elbel–Steidl ’98)

rigorous proof of exponential convergence vs w, ie # digits = log10(1/ǫ) ≈ 0.5w

• Realization there’s a close-to-optimal kernel (“Kaiser–Bessel”) (Jackson ’91)

nearly twice the convergence rate: log10(1/ǫ) ≈ 0.9w

rigorous analysis (Fourmont ’99, Fessler ’02, Potts–Kunis. . . ’02)

• Fast gridding for Gaussian case by cutting ex evals (Greengard–Lee ’04)

• Low-rank factorization version (Ruiz-Antolı́n–Townsend ’16)

uses ∼ wd (not-upsampled!) FFT calls

• Simpler kernel, same rate as K–B, rigorous analysis (B–Magland)

But what on earth is Kaiser–Bessel ?

Turns out requirements A) and B) v. close to those for good window funcs

Recall a window func. designed to make non-periodic signal pretend to be periodic. . .
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Story of the “Kaiser–Bessel” kernel

People cite this obscure 1966 book for Kaiser–Bessel:

(had to buy 2nd-hand) Let’s open. . .



First appearance of Kaiser–Bessel in print

What does: “discovered” by Kaiser following a discussion with B. F. Logan mean?



Kaiser–Bessel Fourier transform pair

The truncated kernel

φKB(z) :=

{

I0(β
√
1− z2), |z| ≤ 1 we scale z := 2x/wh

0, otherwise

is the FT of

φ̂KB(ξ) = 2
sinh

√

β2 − ξ2
√

β2 − ξ2
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Still unknown to Gradshteyn–Ryzhik, Bateman, Prudnikov, Wolfram r, Maple r . . .
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the main lobe consistent with certain roll-offs in the side lobes.
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Back to Kaiser. . .

So one day I went in Ben’s office and his chalkboard was just filled with

equations. Way down in the left-hand corner of Ben’s chalkboard was this

transform pair, the I0–sinh transform pair. I didn’t know what I0 was, I said,

“Ben, what’s I0?” He came back with “Oh, that’s the modified Bessel function

of the first kind and order zero.” I said, “Thanks a lot, Ben, but what is that?”

He said, “You know, it’s just a basic Bessel function but with purely imaginary

argument.” So I copied down the transform pair and went back to my office.
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So one day I went in Ben’s office and his chalkboard was just filled with

equations. Way down in the left-hand corner of Ben’s chalkboard was this

transform pair, the I0–sinh transform pair. I didn’t know what I0 was, I said,

“Ben, what’s I0?” He came back with “Oh, that’s the modified Bessel function

of the first kind and order zero.” I said, “Thanks a lot, Ben, but what is that?”

He said, “You know, it’s just a basic Bessel function but with purely imaginary

argument.” So I copied down the transform pair and went back to my office.

I wrote a program . . . got the data back and when I compared the I0 function to

the prolate, I said, “What’s going on here? They look almost identical!” The

answers were within about a tenth of a percent of one another. One program

[PSWF] required 600 lines of code and the other ten or twelve lines of code!

P.S. we now have a kernel needing < 1 line of code . . .



Compare the kernels

Plot the kernels for support of w = 13 fine grid points:
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• very hard to distinguish on linear plot! Decays differ on log plot

• Kaiser–Bessel: tail of FT is at 10−12

• best truncated Gaussian has tail only at 10−7

• “ES” is our new kernel; v. close to KB
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Our new ES (“exp of sqrt”) kernel

ψES(x) := eβ
√
1−z2 , z := 2x/wh ∈ [−1, 1], zero otherwise.

(found via numerical tinkering: simplifying the I0)

• its Fourier transform ψ̂ES has no known formula

1) Numerical consequence: use quadrature on FT to eval. 1
ψ̂ES

for step c)

2) Analytic consequence: one has to work with the FT integral directly. . .

We prove essentially ǫ = O
(√
we−πw

√
1−1/σ

)

as kernel width w →∞

• same exponential convergence rate as Kaiser–Bessel, and as PSWF (Fuchs ’64)

• consequence: w ≈ 7 gives accuracy ǫ = 10−6, w ≈ 13 gets ǫ = 10−12.

• However, evaluation now requires only one sqrt, one ex, couple of mults.

• proof is 8 pages: contour integrals split into parts, sums into various parts,

bounding the conditionally-convergent tail sum. . .



One proof ingredient

Asymptotics (in β) of the Fourier transform ψ̂(ρβ) =

∫ 1

−1
eβ(

√
1−z2−iρz)dz

via deforming to complex plane, steepest descent (saddle pts) (Olver)
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Summary: new approx. FT pair K–B & PSWF also may be interpreted this way

“ exp(semicircle)
FT←→ exp(semicircle) + exponentially small tail ”



Implementation aspects

• Type 1,2,3 for dimensions d = 1, 2, 3: nine routines

• C++/OpenMP/SIMD, shared mem, calls FFTW. Apache license

• Wrappers to C, Fortran, MATLAB, octave, python, julia



Implementation aspects

• Type 1,2,3 for dimensions d = 1, 2, 3: nine routines

• C++/OpenMP/SIMD, shared mem, calls FFTW. Apache license

• Wrappers to C, Fortran, MATLAB, octave, python, julia

• Cache-aware multithreaded spreading:

Type-2 easy: parallelize over bin-sorted NU pts no collisons reading from U blocks

Type-1 not so: writes collide load-balancing, slow index-wrapping, ≤ 104 NU pts per subprob:

NU pts x j

copy over

w

N f

subproblems: each own thread

2D case, type−1, spread to fine grid:

1D kernel evals

outer prod

spread



Performance: 3D Type-1 (the most dramatic)

Compare FINUFFT to • CMCL NUFFT (single-threaded, Gaussian kernel)

• NFFT (multi-threaded, “backwards” Kaiser–Bessel) ie they eval. sinch
√
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Compare FINUFFT to • CMCL NUFFT (single-threaded, Gaussian kernel)
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• all scale as O(M | log ǫ|d +N logN); it’s about prefactors and RAM usage

• at M = 108: we need only 2 GB, vs NFFT pre needs 60 GB at high acc.



3D Type-1: RAM & CPU usage for non-uniform density

We use all threads efficiently, vs NFFT assigns threads to fixed x-slices:
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done from MATLAB via https://github.com/ahbarnett/memorygraph



Conclusions

NUFFT is a key tool with many scientific computing applications

We speed up and simplify the NUFFT using. . .

• mathematics: creation and rigorous analysis of new kernel func ψ
• no analytic ψ̂ need be known: instead use numerical quadrature

• cache-aware and thread-balanced implementation



Conclusions

NUFFT is a key tool with many scientific computing applications

We speed up and simplify the NUFFT using. . .

• mathematics: creation and rigorous analysis of new kernel func ψ
• no analytic ψ̂ need be known: instead use numerical quadrature

• cache-aware and thread-balanced implementation

Result: FINUFFT (Flatiron Institute Non-Uniform Fast Fourier Transform)

https://github.com/ahbarnett/finufft

fast, simple to install and use. Send me bug reports & feature req’s

Future:

• GPU spreader (build upon promising work of: Kunis–Kunis ’12, Ou ’17)

• math: “why” are PSWF and K–B so close to eβ
√
1−z2 ? no, it’s not WKB. . .



EXTRA SLIDES



Ongoing: Intel vector optimizations

Vector intrinsics accelerate by up to 2×: (Ludvig af Klinteberg)

• exploit SSE, SSE2, AVX, etc, common to 99% of CPUs.


